Skip to main content

PC Electricity Consumption

With electricity quickly approaching $2 per watt per year, leaving a computer powered is a very expensive proposition. I found that I could power down my PC and save over $100 per year.

Here's how to accurately estimate how much your computers cost to operate.

Calculating Costs

In order to calculate the cost, I first calculated my total cost per watt per year. With my recent electric bill in hand, I used the following formula:

$ per Watt-Year = (bill's $amount) ÷ (bill's KWH) × 8.766

Given the following calculation, my electricity rate is a staggering $1.51 per watt-year:

$30.29 ÷ 176 KWh × 8.766 = $1.51

With this watt-year value, it's easy to accurately estimate how much your computer (or clock radio or refrigerator) costs per year.

Computer Cost per Year of Operation

Mac MiniPowerBookiMac G4iMac G5eMac 700WinPC
On19 [$25]
14 [$18]
38 [$50]
58 [$76]
91 [$120]
108 [$142]
Sleep mode
2
2
6
4
7
55
Off112134
DVD View24225374107115
DVD Rip37326472127128
Brick Only00n/an/an/an/a

Impact on Air Conditioning
The above chart represents only the power that the PCs consume. But in the warmer months, the heat generated by a computer (or any other in-home electrical device) generates heat that needs to be removed by an air conditioner. This is simple thermodynamics.

An optimistic rule of thumb is that it takes 1/3rd of a watt of electricity for your new, very high efficiency air conditioner to cool (remove) the heat generated by a 1 watt device.

Additional AC watts = (watts consumed by device) ÷ 3

So, for example, let's say you're using a PC and a monitor that consume about 200 watts of electricity. Practically, all of those 200 watts are released as heat into the room. How many watts "harder" does your AC have to work to remove the heat released by the computer system?

66 watts = (200 watt PC w/ Monitor) ÷ 3

So that 200 watt computer/monitor combo releases enough heat so that your AC unit needs to consume an additional 66 watts of electricity to keep the room cool. This is starting to add up! Leaving your 200 watt computer on is actually costing you 266 watts in the summer months!

Impact on heating
There is some good news - the heat that your computer generates does help heat your home in the colder months, reducing the amount of heat that your heating system needs to generate. There is only one drawback - a computer is an inefficient heater compared to a typical home heating system - a heat pump or a fueled furnace is a much more cost effective way to produce heat. The savings related to "heating-by-computer" is highly variable, based on the type and efficiency of the heating system you have, plus the cost of the fuel you're using. Here are some estimated adjustments based on high efficiency heating systems of various types:

Natural Gas: adjusted watts = watts consumed × 0.65
Oil Furnace: adjusted watts = watts consumed × 0.54
Heat Pump..: adjusted watts = watts consumed × 0.50

So in those bitter cold months when your home heating system is running, and assuming you're using a high efficiency gas furnace, our example 200 watt computer system is only "costing you in dollars" the equivalent of 130 watts of electricity, because your saving 70 watts in "home heating value". These calculations are highly dependent on commodity energy prices and the efficiency of your home heating system.

[The above adjustment calculations are based on the cost of generating heat in a residential heating system as follows:
  • High efficincy gas furnace (97% efficient, $1.55 per therm)
  • High efficiency oil furnace (89% efficient, $2.50 per gallon)
  • Electric Heat Pump (effective 200% efficient, 15¢ per KWh)
  • Electricity: (100% efficient, 15¢ per KWh)
Your heating system may have different efficiency properties, and fuel rates can fluctuate wildly. Although electricity isn't really 100% efficient considering generation and transmission losses, for the purposes of these cost comparisons, 100% efficiency is correct. Similarly, there is energy expended to move gas and oil from their source, but again, we attempting an apples-to-apples comparison of home heating costs by focusing on the almighty dollar, not source-to-consumer energy efficiency.]

Computer Details for the above chart
MiniAn Intel-based Mac Mini, 1.66 GHz dual core CPU, wireless on, bluetooth on.
PowerBookA 12" G4 PowerBook, 1.5 GHz CPU, wireless on, bluetooth on, screen fully dimmed, fully charged
iMac G4A 17" iMac G4, 1.0 GHz CPU, no wireless or bluetooth, screen at normal brightness
iMac G5A 17" iMac G5, first generation, 1.8 GHz CPU, wireless on, screen at normal brightness
eMac 700A 700 MHz eMac with 640 MB RAM and 802.11b wireless on, including 17" CRT.
WinPCAn AMD Athlon XP home-built, 1.6 GHz CPU, 512 MB RAM, generic case, Windows XP. Display not measured.

I measured the computers doing a variety of tasks ... from nothing to "heavy usage". I started with just booting the computer, launching a few applications, and watching the meter. I call this the "on" state.

The above chart shows the power consumption numbers I got out of my watt meter. I used the handy and relatively inexpensive "kill-a-watt" power meter for all measurements. This handy device measures Watts, Volt-Amps, KWh, Frequency, and a bunch of other power attributes. Note that not all the numbers are "fair" - the eMac, iMac G4 and iMac G5 have a built in display which was on and measured, and the PowerBook does battery trickle charging, but it's screen was fully dimmed during measurement. (for full screen brightness on the powerbook, add 5 watts). The Mini and WinPC's monitors were not measured.

Operating State Description
OnComputer on, user logged in, apps up, CPU low.
SleepComputer in "sleep" or "standby" mode (windows)
OffComputer powered down, but plugged into wall outlet
DVD viewWatching a video DVD using OS-provided tools
DVD ripRipping a video DVD to MPEG; consumed CPU(s).
Brick OnlyPower brick consumption while detached from its computer (mini, PB only).

Next, I hope to upgrade my Mac Mini to a Core 2 Duo CPU - stay tuned for more details!

Popular posts from this blog

Fixing a SodaStream Jet, part 1: Disassembly Guide

I've had my SodaStream Jet for years, and once in a while something has gone wrong. Disassembly is the first step to repair.  Start with this article to see how to disassemble the SodaStream, and then once you have that down, scroll through my other articles to see how I repaired specfic SodaStream problems. SodaStream Jet Disassembly Guide Tools Required Flat head screwdriver Phillips head screwdriver 1. Remove the Carbonator.  Duh. 2. Remove the black panel lever The front big black tilt lever needs to be removed first. Removing this panel is tricky, but it isn't impossible. Looking up at the bottom of the black panel, there are two tabs, one on the left and one on the right. These tabs fully secure the panel in place. The trick is to use a flat-head screwdriver under the plastic to gently lever the tabs out of the way.  Note in the pictures how I approach these tabs with my screwdriver.  I usually release the left side first, and then I release ...

Fixing my Wahl 9918 Groomsman Beard and Mustache Trimmer

Not everyone would bother repairing a $25 beard trimmer, but why not fix something for under $5 instead of spending another $25? My  Wahl 9918 Groomsman Beard and Mustache Trimmer  has admirably performed its beauty duty for many years, but the time came when the battery just wasn't holding a charge any more.  Most people would just put the trimmer in the trash and buy a new one, but I figured I could repair my otherwise excellent Wahl and save some money. In fact, even high priced trimmer and rotary shaver brands, like Norelco and Remington, can be easily repaired using a process similar to the one I used to fix my Wahl.  Read on to find out how. I opened up the Wahl by popping off the black plastic faceplate with a tiny flathead screwdriver, which revealed two screws.  By removing the two screws I was able to easily open up the unit, revealing the guts of the device. Backplate off, Revealing the screws The internals are rather simple: a motor, a...

Macintosh: Upgrading an eMac

It's been a long time since I wrote this article, but the fact remains: The good old eMac can still be useful if you take the simple steps to keep it as good as it can be.  All can run Tiger, and most can run Leopard - great operating systems for their day with a bit of useful life.  This article describes the procedure I used to upgrade my old eMac, including: Replacing the internal hard disk with a large capacity drive. Increasing the memory for performance Upgrading the operating system Here I'm upgrading a 700 MHz eMac, but the procedure and tasks for upgrading other eMac models should be almost identical. Upgrading versus Replacing My sister's eMac is of the 700 mhz variety, with 256 MB of memory. The machine seemed to be getting "slower", and the original 40 GB disk was becoming jammed packed with photos and iTunes, and within a few months she'd be out of disk space. There were two options to address the problems: upgrade the eMac, or go o...

Porsche Key Remote Battery Repair Video How-To

We now live in the age where part of your life is spending time and money maintaining and repairing things like your car keys . My Porsche's remote key was getting weaker and weaker, until one day it stopped operating altogether. Keyless remote without the remoteness. Not so good. I was a bit fearful spending a sizable chunk of my time and money at the dealership to have such a small problem addressed, and so I decided that I would try to replace the battery myself. Items required A clear work surface A small flat blade screw driver. A quality lithium CR-2032 Battery, available here. Procedure The following video shows how I successfully opened up the key without breaking it, and replaced the alarm remote battery. In short, from the vantage point of the key's steel part facing away and the buttons facing up: I take a small screwdriver and press on the little plastic tab on the left side.  At the same time I use my fingers to start to pull the two halves apart.  From th...

Trendnet TEW-652BRP and DD-WRT Success!

I recently visited my dad while on a business trip when I coincidentally discovered that DD-WRT is now available for his TEW-652. The TEW-652BRP has been a great router for my father, but it isn't what I'd call "feature rich". An upgrade to DD-WRT is a big bonus. I live 2500 miles away from my non-technical father, and so a well-specified router that helps me manage his network remotely is important to both of us. This article will explain what I did to finally get DD-WRT working on my TEW-652BRP v1.0R. About the TEW-652brp It's a nice looking little black 802.11n, 2.5 GHz router. It was amazingly inexpensive (usually way under $30), and  the TEW-652brp is available through Amazon. Mine is a version 1.0R, you'll likely want the same version. Out of the box, it works quite well - it has been stable, and I was fairly happy with the stock firmware. But it was short on features - I like having VPN, SSH, and flexible DHCP services on the home netwo...

Excellent DD-WRT Router for Me: Netgear WNDR3400 / N600

My WiFi performance was suffering, and so I decided to do something about it and upgrade my router. When I say my WiFi performance was suffering, I really mean it:  I live in a large high-rise apartment building and there are 100+ WiFi access points visible from my home office.  All of the contentious traffic was severely curtailing my WiFi reliability.  I was lucky to get 1 Mbit/second throughput.  Sometimes I was lucky to stay connected even with my WiFi router in the same room. I decided it was time to go for 5 GHz, which is a WiFi band which is used less frequently and which has a tougher time traversing walls.  And of course I wanted DD-WRT support.  The set of features I was looking for included: Trouble-free DD-WRT support 5 GHz 802.11n Support Simultaneous dual band capability Inexpensive.  Maybe even cheap.  For me this means under $50.  Under $35 is even better! It sounds like an easy task to bring all this together: A...

Other Posts

Show more